资源类型

期刊论文 963

会议视频 46

会议专题 1

年份

2024 2

2023 66

2022 105

2021 81

2020 61

2019 71

2018 62

2017 64

2016 52

2015 73

2014 38

2013 51

2012 25

2011 38

2010 44

2009 30

2008 35

2007 36

2006 10

2005 11

展开 ︾

关键词

能源 18

制造强国 8

汽车强国 5

电力系统 5

信息技术 4

制造业 4

智能制造 4

光伏发电 3

太阳能 3

海上风电 3

2021全球十大工程成就 2

2022全球十大工程成就 2

2023全球十大工程成就 2

Cu(In 2

Ga)Se2 2

Z箍缩 2

个人热管理 2

中长期 2

全生命周期 2

展开 ︾

检索范围:

排序: 展示方式:

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentratedsolar power plants: A review

Wenjin Ding, Alexander Bonk, Thomas Bauer

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 564-576 doi: 10.1007/s11705-018-1720-0

摘要:

Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP-nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as containers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500–800 °C) for realizing the commercial application of molten chlorides in CSP. The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.

关键词: corrosion mechanisms     impurities     metallic corrosion     salt purification     electrochemical techniques    

Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough

Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI

《能源前沿(英文)》 2020年 第14卷 第4期   页码 867-881 doi: 10.1007/s11708-020-0707-y

摘要: This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations. The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers. The annual electricity productions of power plants with novel receivers in Phoenix, Sevilla, and Tuotuohe are 8.5%, 10.5%, and 14.4% higher than those with traditional receivers at the outlet temperature of 550°C. The levelized cost of electricity of power plants with double-selective-coated receivers can be decreased by 6.9%, 8.5%, and 11.6%. In Phoenix, the optimal operating temperature of the power plants is improved from 500°C to 560°C by employing a novel receiver. Furthermore, the sensitivity analysis of the receiver heat loss, solar absorption, and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance. Solar absorption has a positive contribution to annual electricity productions, whereas heat loss and freeze protection temperature have a negative effect on electricity outputs. The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.

关键词: concentrated solar power     parabolic trough receiver     heat loss     solar energy     annual performance    

Impacts of solar multiple on the performance of direct steam generation solar power tower plant withintegrated thermal storage

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

《能源前沿(英文)》 2017年 第11卷 第4期   页码 461-471 doi: 10.1007/s11708-017-0503-5

摘要: Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MW in Sevilla as a reference case, the minimum LCOE is 21.77 ¢/kWh with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms of optimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.

关键词: direct steam generation     solar power tower     solar multiple     thermal energy storage capacity     levelized cost of electricity (LCOE)    

Optimization of cold-end system of thermal power plants based on entropy generation minimization

《能源前沿(英文)》 2022年 第16卷 第6期   页码 956-972 doi: 10.1007/s11708-021-0785-5

摘要: Cold-end systems are heat sinks of thermal power cycles, which have an essential effect on the overall performance of thermal power plants. To enhance the efficiency of thermal power plants, multi-pressure condensers have been applied in some large-capacity thermal power plants. However, little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified. Therefore, the design optimization methods of cold-end systems with single- and multi-pressure condensers are developed based on the entropy generation rate, and the genetic algorithm (GA) is used to optimize multiple parameters. Multiple parameters, including heat transfer area of multi-pressure condensers, steam distribution in condensers, and cooling water mass flow rate, are optimized while considering detailed entropy generation rate of the cold-end systems. The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant. Moreover, the economic performance can be improved with the adoption of the multi-pressure cold-end system. When compared with the single-pressure cold-end system, the excess revenues gained by using dual- and quadruple-pressure cold-end systems are 575 and 580 k$/a, respectively.

关键词: cold-end system     entropy generation minimization     optimization     economic analysis     genetic algorithm (GA)    

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 513-528 doi: 10.1007/s11708-019-0638-7

摘要: It is difficult to accurately measure the temperature of the falling particle receiver since thermocouples may directly be exposed to the solar flux. This study analyzes the thermal performance of a packed bed receiver using large metal spheres to minimize the measurement error of particle temperature with the sphere temperature reaching more than 700°C in experiments in a solar furnace and a solar simulator. The numerical models of a single sphere and multiple spheres are verified by the experiments. The multiple spheres model includes calculations of the external incidence, view factors, and heat transfer. The effects of parameters on the temperature variations of the spheres, the transient thermal efficiency, and the temperature uniformity are investigated, such as the ambient temperature, particle thermal conductivity, energy flux, sphere diameter, and sphere emissivity. When the convection is not considered, the results show that the sphere emissivity has a significant influence on the transient thermal efficiency and that the temperature uniformity is strongly affected by the energy flux, sphere diameter, and sphere emissivity. As the emissivity increases from 0.5 to 0.9, the transient thermal efficiency and the average temperature variance increase from 53.5% to 75.7% and from 14.3% to 27.1% at 3.9 min, respectively. The average temperature variance decreases from 29.7% to 9.3% at 2.2 min with the sphere diameter increasing from 28.57 mm to 50 mm. As the dimensionless energy flux increases from 0.8 to 1.2, the average temperature variance increases from 13.4% to 26.6% at 3.4 min.

关键词: packed bed     solar thermal power plants     high heat fluxes     radiative heat transfer    

下一代太阳能光热电站中熔融氯盐技术研发进展 Review

丁文进, Thomas Bauer

《工程(英文)》 2021年 第7卷 第3期   页码 334-347 doi: 10.1016/j.eng.2020.06.027

摘要:

结合热能储存(TES,以下简称储热)的太阳能光热发电(concentrated solar power, CSP)技术是未来可再生能源系统中最具应用前景的发电技术之一

关键词: 太阳能     太阳能光热发电(CSP)     热能储存(TES)     导热流体(HTF)     超临界二氧化碳动力循环     腐蚀控制    

Viability of a concentrated solar power system in a low sun belt prefecture

Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE

《能源前沿(英文)》 2020年 第14卷 第4期   页码 850-866 doi: 10.1007/s11708-020-0664-5

摘要: Concentrating solar power (CSP) is considered as a comparatively economical, more efficient, and large capacity type of renewable energy technology. However, CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available. This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance (DNI). Various critical analyses and plant economics have been evaluated with a lesser DNI state. The obtained results out of the designed system, subjected to low DNI are not found below par, but comparable to some extent with the performance results of such CSP plants at a higher DNI. The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy (LCOE) and augments the plant capacity factor. The capacity factor, the plant efficiency, and the LCOE are found to be 32.50%, 17.56%, and 0.1952 $/kWh, respectively.

关键词: concentrated solar power     direct normal irradiance     plant performance     plant economics     thermal energy storage    

Numerical simulation of underground seasonal cold energy storage for a 10 MW solar thermal power plant

Zulkarnain ABBAS, Yong LI, Ruzhu WANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 328-344 doi: 10.1007/s11708-020-0676-1

摘要: This paper aims to explore an efficient, cost-effective, and water-saving seasonal cold energy storage technique based on borehole heat exchangers to cool the condenser water in a 10 MW solar thermal power plant. The proposed seasonal cooling mechanism is designed for the areas under typical weather conditions to utilize the low ambient temperature during the winter season and to store cold energy. The main objective of this paper is to utilize the storage unit in the peak summer months to cool the condenser water and to replace the dry cooling system. Using the simulation platform transient system simulation program (TRNSYS), the borehole thermal energy storage (BTES) system model has been developed and the dynamic capacity of the system in the charging and discharging mode of cold energy for one-year operation is studied. The typical meteorological year (TMY) data of Dunhuang, Gansu province, in north-western China, is utilized to determine the lowest ambient temperature and operation time of the system to store cold energy. The proposed seasonal cooling system is capable of enhancing the efficiency of a solar thermal power plant up to 1.54% and 2.74% in comparison with the water-cooled condenser system and air-cooled condenser system respectively. The techno-economic assessment of the proposed technique also supports its integration with the condenser unit in the solar thermal power plant. This technique has also a great potential to save the water in desert areas.

关键词: seasonal cold energy storage     borehole heat exchangers     typical meteorological data     TRNSYS     condenser cooling     techno-economic assessment    

Prediction of cost and emission from Indian coal-fired power plants with CO

Naushita SHARMA, Udayan SINGH, Siba Sankar MAHAPATRA

《能源前沿(英文)》 2019年 第13卷 第1期   页码 149-162 doi: 10.1007/s11708-017-0482-6

摘要: Coal-fired power plants are one of the most important targets with respect to reduction of CO emissions. The reasons for this are that coal-fired power plants offer localized large point sources (LPS) of CO and that the Indian power sector contributes to roughly half of all-India CO emissions. CO capture and storage (CCS) can be implemented in these power plants for long-term decarbonisation of the Indian economy. In this paper, two artificial intelligence (AI) techniques—adaptive network based fuzzy inference system (ANFIS) and multi gene genetic programming (MGGP) are used to model Indian coal-fired power plants with CO capture. The data set of 75 power plants take the plant size, the capture type, the load and the CO emission as the input and the COE and annual CO emissions as the output. It is found that MGGP is more suited to these applications with an value of more than 99% between the predicted and actual values, as against the ~96% correlation for the ANFIS approach. MGGP also gives the traditionally expected results in sensitivity analysis, which ANFIS fails to give. Several other parameters in the base plant and CO capture unit may be included in similar studies to give a more accurate result. This is because MGGP gives a better perspective toward qualitative data, such as capture type, as compared to ANFIS.

关键词: carbon capture and storage     power plants     artificial intelligence     genetic programming     neuro fuzzy    

Application of rapid thermal processing on SiN thin film to solar cells

LI Youjie, LUO Peiqing, ZHOU Zhibin, CUI Rongqiang, HUANG Jianhua, WANG Jingxiao

《能源前沿(英文)》 2008年 第2卷 第4期   页码 519-523 doi: 10.1007/s11708-008-0095-1

摘要: Rapid thermal processing (RTP) of SiN thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were discussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiN thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud

Linrui MA, Zhifeng WANG, Ershu XU, Li XU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 283-297 doi: 10.1007/s11708-019-0649-4

摘要: To better understand the characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages, a novel method which combines a closed-loop thermal hydraulic model (CLTHM) and cloud vector (CV) is developed. Besides, the CLTHM is established and validated based on a pilot plant. Moreover, some key parameters which are used to characterize a typical PTSF and CV are presented for further simulation. Furthermore, two sets of results simulated by the CLTHM are compared and discussed. One set deals with cloud passages by the CV, while the other by the traditionally distributed weather stations (DWSs). Because of considering the solar irradiance distribution in a more detailed and realistically way, compared with the distributed weather station (DWS) simulation, all essential parameters, such as the total flowrate, flow distribution, outlet temperature, thermal and exergetic efficiency, and exergetic destruction tend to be more precise and smoother in the CV simulation. For example, for the runner outlet temperature, which is the most crucial parameter for a running PTSF, the maximum relative error reaches −15% in the comparison. In addition, the mechanism of thermal and hydraulic unbalance caused by cloud passages are explained based on the simulation.

关键词: parabolic trough solar field (PTSF)     thermal hydraulic model     cloud passages     transients    

Integrated benefits of power generation by straw biomass —A case study on the Sheyang Straw Power Plants

Xiaoshun LI , Futian QU , Dongmei JIANG , Peixin ZHU ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 348-353 doi: 10.1007/s11783-009-0026-3

摘要: Power generation using straw biomass has quantifiable benefits from an economic, ecological, and sociological perspective in China. The methods used to construct the assessment models of these integrated benefits were the revenue capitalization approach and the discounted-cash-flow approach. The results indicated that a straw power plant with the capacity of 2.50×10 W and burning 1.23×10 tons of cotton straw could annually supply 1.40×10 kWh of power. However, it would not be until six years later that these results could be measured. Over the long term, the gross benefits could reach up to 4.63×10 Yuan. Therefore, the total benefits are expected to be 1.18 × 10 Yuan if all available straw resources are used to generate power. The policy implication showed that the long-term integrated benefits of power generation by straw biomass outweighed the short-term benefits. This is the main incentive to use straw biomass for power generation in the future.

关键词: straw biomass resources     power generation     renewable energy     Sheyang county    

Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization

Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 35-48 doi: 10.1007/s11705-020-1937-6

摘要: Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials, nanofabrication, nanophotonics and energy utilization. A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications. In this review, we present recent advances of broadband absorbers which absorb light by nanostructures. We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based, plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization, seawater purification and photoelectronic device design.

关键词: nanostructured broadband absorbers     solar energy harvesting     thermal utilization    

中国新一代核能用材总体发展战略研究

干勇,赵宪庚,徐匡迪

《中国工程科学》 2019年 第21卷 第1期   页码 1-5 doi: 10.15302/J-SSCAE-2019.01.001

摘要:

材料技术是支撑和保障核工程安全稳定运行的前提和基础。我国现有在役和在建的56台核电机组中有52台是压水堆,钠冷快堆和高温气冷堆正在开展示范工程电站的建设,其他堆型尚处于研究阶段。本文分析了我国新一代核能用材研发、制造、应用过程中存在的共性问题、在役和在建核能工程用材存在的突出问题、在研核能技术用材存在的关键问题,在此基础上提出了我国新一代核能用材的发展战略建议,包括设立国家新一代核能用材专业指导委员会,设立新一代核能用材国家专项基金或长期稳定支持的专项科技计划,创建我国新一代核能用材先进完整标准体系,建设国家层面的共享型工程级辐照实验装置,在独立自主原则下,继续开展新一代核能用材国际合作等。

关键词: 新一代核能     压水堆     核能用材     发展战略    

Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: A

《能源前沿(英文)》 2023年 第17卷 第1期   页码 16-42 doi: 10.1007/s11708-023-0866-8

摘要: To reduce the levelized cost of energy for concentrating solar power (CSP), the outlet temperature of the solar receiver needs to be higher than 700 °C in the next-generation CSP. Because of extensive engineering application experience, the liquid-based receiver is an attractive receiver technology for the next-generation CSP. This review is focused on four of the most promising liquid-based receivers, including chloride salts, sodium, lead-bismuth, and tin receivers. The challenges of these receivers and corresponding solutions are comprehensively reviewed and classified. It is concluded that combining salt purification and anti-corrosion receiver materials is promising to tackle the corrosion problems of chloride salts at high temperatures. In addition, reducing energy losses of the receiver from sources and during propagation is the most effective way to improve the receiver efficiency. Moreover, resolving the sodium fire risk and material compatibility issues could promote the potential application of liquid-metal receivers. Furthermore, using multiple heat transfer fluids in one system is also a promising way for the next-generation CSP. For example, the liquid sodium is used as the heat transfer fluid while the molten chloride salt is used as the storage medium. In the end, suggestions for future studies are proposed to bridge the research gaps for > 700 °C liquid-based receivers.

关键词: next-generation concentrating solar power     liquid-based solar receiver     molten salt     liquid metals    

标题 作者 时间 类型 操作

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentratedsolar power plants: A review

Wenjin Ding, Alexander Bonk, Thomas Bauer

期刊论文

Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough

Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI

期刊论文

Impacts of solar multiple on the performance of direct steam generation solar power tower plant withintegrated thermal storage

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

期刊论文

Optimization of cold-end system of thermal power plants based on entropy generation minimization

期刊论文

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

期刊论文

下一代太阳能光热电站中熔融氯盐技术研发进展

丁文进, Thomas Bauer

期刊论文

Viability of a concentrated solar power system in a low sun belt prefecture

Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE

期刊论文

Numerical simulation of underground seasonal cold energy storage for a 10 MW solar thermal power plant

Zulkarnain ABBAS, Yong LI, Ruzhu WANG

期刊论文

Prediction of cost and emission from Indian coal-fired power plants with CO

Naushita SHARMA, Udayan SINGH, Siba Sankar MAHAPATRA

期刊论文

Application of rapid thermal processing on SiN thin film to solar cells

LI Youjie, LUO Peiqing, ZHOU Zhibin, CUI Rongqiang, HUANG Jianhua, WANG Jingxiao

期刊论文

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud

Linrui MA, Zhifeng WANG, Ershu XU, Li XU

期刊论文

Integrated benefits of power generation by straw biomass —A case study on the Sheyang Straw Power Plants

Xiaoshun LI , Futian QU , Dongmei JIANG , Peixin ZHU ,

期刊论文

Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization

Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su

期刊论文

中国新一代核能用材总体发展战略研究

干勇,赵宪庚,徐匡迪

期刊论文

Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: A

期刊论文